Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Eur J Cancer ; 148: 328-339, 2021 05.
Article in English | MEDLINE | ID: covidwho-1103845

ABSTRACT

BACKGROUND: Coronavirus disease (COVID-19) is interfering heavily with the screening, diagnosis and treatment of cancer patients. Better knowledge of the seroprevalence and immune response after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in this population is important to manage them safely during the pandemic. METHODS: 922 cancer patients, 100 non-cancer patients and 94 health care workers (HCW) attending the Multidisciplinary Oncology Unit of Antwerp University Hospital from 24th of March 2020 till 31st of May 2020, and the Oncology Unit of AZ Maria Middelares Hospital, Ghent, from 13th of April 2020 till 31st of May 2020 participated in the study. The Alinity® (A; Abbott) and Liaison® (D; DiaSorin) commercially available assays were used to measure SARS-CoV-2 IgG, while total SARS-CoV-2 Ig was measured by Elecsys® (R; Roche). RESULTS: In the overall study population IgG/total SARS-CoV-2 antibodies were found in respectively 32/998 (3.2%), 68/1020 (6.7%), 37/1010 (3.7%) and of individuals using the A, D or R test. Forty-six out of 618 (7.4%) persons had a positive SARS-CoV-2 polymerase chain reaction (RT-PCR) test. Seroprevalence in cancer patients (A:2.2%, D:6.2%, R:3.0%), did not significantly differ from that in non-cancer patients (A:1.1%, D:5.6%, R:0.0%), but was lower than the HCW (A:13%, D:12%, R:12%; respectively Fisher's exact test p = 0.00001, p = 0.046, p = 0.0004). A positive SARS-CoV-2 RT-PCR was found in 6.8% of the cancer patients, 2.3% of the non-cancer patients and 28.1% of the HCW (Fisher's exact test p = 0.0004). Correlation between absolute values of the different Ig tests was poor in the cancer population. Dichotomising a positive versus negative test result, the A and R test correlated well (kappa 0.82 p McNemar test = 0.344), while A and D and R and D did not (respectively kappa 0.49 and 0.57; result significantly different p McNemar test = <0.0001 for both). The rate of seroconversion (>75%) and median absolute antibody levels (A: 7.0 versus 4.7; D 74.0 versus 26.6, R: 16.34 versus 7.32; all >P Mann Whitney U test = 0.28) in cancer patients and HCW with a positive RT-PCR at least 7 days earlier did not show any differences. However, none (N = 0/4) of the patients with hematological tumours had seroconversion and absolute antibody levels remained much lower compared to patients with solid tumours (R: 0.1 versus 37.6, p 0.003; D 4.1 versus 158, p 0.008) or HCW (all p < 0.0001). CONCLUSION: HCW were at high risk of being infected by SARS-CoV-2 during the first wave of the pandemic. Seroprevalence in cancer patients was low in the study period. Although Ig immune response in cancer patients with solid tumours does not differ from healthy volunteers, patients with hematological tumours have a very poor humoral immune response. This has to be taken into account in future vaccination programmes in this population. SARS-CoV-2 antibody tests have divergent results and seem to have little added value in the management of cancer patients.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , Health Personnel/statistics & numerical data , Immunoglobulin G/immunology , Neoplasms/epidemiology , Adolescent , Aged , Ambulatory Care , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Middle Aged , Neoplasms/immunology , Oncology Service, Hospital , Prospective Studies , Reagent Kits, Diagnostic , Reproducibility of Results , SARS-CoV-2 , Seroconversion , Seroepidemiologic Studies
2.
Cancer Treat Rev ; 89: 102068, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-640225

ABSTRACT

The outbreak of the SARS-CoV-2 pandemic has overwhelmed health care systems in many countries. The clinical presentation of the SARS-CoV-2 varies between a subclinical or flu-like syndrome to that of severe pneumonia with multi-organ failure and death. Initial reports have suggested that cancer patients may have a higher susceptibility to get infected by the SARS-CoV-2 virus but current evidence remains poor as it is biased by important confounders. Patients with ongoing or recent cancer treatment for advanced active disease, metastatic solid tumors and hematological malignancies are at higher risk of developing severe COVID-19 respiratory disease that requires hospitalization and have a poorer disease outcome compared to individuals without cancer. However it is not clear whether these are independent risk factors, or mainly driven by male gender, age, obesity, performance status, uncontrolled diabetes, cardiovascular disease and various other medical conditions. These often have a greater influence on the probability to die due to SARS-CoV-2 then cancer. Delayed diagnosis and suboptimal cancer management due to the pandemic results in disease upstaging and has considerable impact cancer on specific death rates. Surgery during the peak of the pandemic seems to increase mortality, but there is no convincing evidence that adjuvant systemic cancer therapy and radiotherapy are contraindicated, implicating that cancer treatment can be provided safely after individual risk/benefit assessment and some adaptive measures. Underlying immunosuppression, elevated cytokine levels, altered expression of the angiotensin converting enzyme (ACE-2) and TMPRSS2, and a prothrombotic status may fuel the effects of a SARS-CoV-2 in some cancer patients, but have the potential to be used as biomarkers for severe disease and therapeutic targets. The rapidly expanding literature on COVID-19 should be interpreted with care as it is often hampered by methodological and statistical flaws.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/mortality , Neoplasms/mortality , Neoplasms/virology , Pneumonia, Viral/mortality , Angiotensin-Converting Enzyme 2 , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Humans , Neoplasms/immunology , Neoplasms/therapy , Pandemics , Peptidyl-Dipeptidase A/biosynthesis , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2 , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL